CLASS IX SAMPLE PAPER MATHS (STANDARD)

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

1. The question paper contains three parts A, B and C
2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted
3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted

4 Section C consists of 10 questions based on two Case Studies. Attempt any 4 questions from each Case Studies.
5. There is no negative marking.

SECTION A

(Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted)

1. The name of the horizontal line in the cartesian plane which determines the position of a [1] point is called:
(a) Origin
(b) X-axis
(c) Y-axis
(d) Quadrants
2. To locate the position of an object or a point in a plane, we require two lines, they are
(a) Parallel to each other
(c) Both (a) and (b)
(b) perpendicular to each other
(d) None of these
3. The point which lie on x and Y-axis is
(a) $(0,8)$
(b) $(0,0)$
(c) $(4,7)$
(d) $(-7,0)$
4. Show that $0.2353535 \ldots=0.2 \overline{55}$. can be expressed in the form p / q, where p and q are co-prime integers and $q \neq 0$, then p is
(a) 235
(b) 233
(c) 999
(d) 990

chsefors	

5.	Which of the following is equal to x^{2} ? (a) $x^{\frac{12}{7}}-x^{\frac{5}{7}}$ (b) $\sqrt[12]{\left(x^{4}\right)^{\frac{1}{3}}}$ (c) $\left({\sqrt{x^{3}}}^{\frac{2}{3}}\right)$ (d) $x^{\frac{2}{4}} \times x^{\frac{6}{4}}$	[1]
6.	The rationalizing factor of $\frac{3}{\sqrt[4]{32}}$ is (a) $\sqrt[4]{8}$ (b) $\sqrt[4]{32}$ (c) $\sqrt[4]{16}$ (d) none of these	[1]
7.	In figure, $\mathrm{AB}\|\mid \mathrm{ED}$, the value of x is: (a) 62° (b) 26° (c) 98° (d) None of these	[1]
8.	An angle is 18° less than its complementary angle. The measure of this angle is (a) 36° (b) 48° (c) 83° (d) 81°	[1]
9.	In the figure, the value of $\angle \mathrm{AOD}$. is (a) 70° (b) 120° (c) 50° (d) None of these	[1]
10	On plotting $\mathrm{P}(-3,8), \mathrm{Q}(7,-5), \mathrm{R}(-3,-8)$ and $\mathrm{T}(-7,9)$ are plotted on the graph paper, then point(s) in the third quadrant are: (a) P and T	[1]

cbse Sguess	

	(b) Q and R (c) Only R (d) P and R	
11.	In the figure $A D \perp C D$ and $C B \perp C D$. If $A Q=B P$ and $D P=C Q$, then $\angle D A Q=$ (a) $\angle \mathrm{BPC}$ (b) $\angle \mathrm{PCB}$ (c) $\angle \mathrm{BPD}$ (d) $\angle \mathrm{CBP}$	[1]
12.	The equation $\mathrm{y}=5$, in two variables, can be written as: a. $1 . x+1 . y=5$ b. $0 . x+0 . y=5$ c. $1 . x+0 . y=5$ d. $0 \cdot x+1 \cdot y=5$	[1]
13.	ABCD is a square X and Y are points on sides AD and BC respectively such that $A Y=B X$ then $B Y$ is equal to (a) $A X$ (b) CY (c) $D X$ (d) None of these	[1]

chse	
Fguess	CBSEGuess.com

14.

In the figure, $\| m$ and $p \| n$. If $\angle 1=75^{\circ}$, prove that $\angle 2=\angle 1+\frac{1}{3}$ (of an angle x) then x must be equal to

(a) 105°
(b) 150°
(c) 90°
(d) None of these
15. I am four times as old as my son whose age is x years. The linear equation in two variables to represent this statement is
(a) $4 x=y$
(b) $4 x>y$
(c) $4 x<y$
(d) none of these
16. Three coins were tossed 30 times simultaneously. Each time the number of heads occurring was noted down as follows: $0,1,2,2,1,2,3,1,3,0,1,3,1,1,2,2,0,1,2,1$, $3,0,0,1,1,2,3,2,2,0$ then the frequency of 2 is
(a) 10
(b) 9
(c) 6
(d) 5
17. To analyze the election results, the data is collected from a newspapers. The data thus collected is known as
(a) secondary data
(b) raw data
(c) grouped data
(d) primary data

A triangular park ABC has sides 120m, 80m and 50m (see Fig. 12.7). A gardener Dhania has to put a fence all around it and also plant grass inside. How much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of Rs. 20 per metre leaving a space $3 m$ wide for a gate on one side.

| chase Fguess $^{\text {CBSEGuess.com }}$ |
| :--- | :--- |

	$\begin{array}{llll}\text { (a) Rs. } 4490 & \text { (b) Rs. } 4904 & \text { (c) Rs. } 4940 & \text { (d) None of these }\end{array}$	
19.	In the given figure $\angle \mathrm{ADB}=\angle \mathrm{BAC}=90^{\circ}, A D=3 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}$ and $B C=13 \mathrm{~cm}$, the area of the shaded portion is (a) $30 \mathrm{~cm}^{2}$ (b) $24 \mathrm{~cm}^{2}$ (c) $6 \mathrm{~cm}^{2}$ (d) None of these	[1]
20.	Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 1080 cm . Find its area. (a) $36000 \mathrm{~cm}^{2}$ (b) $3600 \mathrm{~cm}^{2}$ (c) $36000000 \mathrm{~cm}^{2}$ (d) None of these	[1]

SECTION B

(Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted)

21	Every rational number is:	a. Whole number
	b. Natural number	
c. Integer		
d. Real number		
22	Which of the following is an irrational numbers	
(a) 0.251		
(b) $\sqrt{49}$		
(c) $4.215215 \ldots$		
(d) $5.120120012 \ldots$		
23	In the given figure, AD is a median. Lines BL and CM are drawn perpendicular to AD. Prove that BL.	

| cbse Fguess $^{\text {CBSEGuess.com }}$ |
| :--- | :---: |

	PRIYAM TAYAL (a) AL (b) LM (c) CM (d) $C D$
24	The side QR of \triangle PQR is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=$. (a) $\frac{2}{3} \angle$ QPR (b) $\frac{3}{4} \angle \mathrm{QPR}$ (c) $\frac{1}{2} \angle \mathrm{QPR}$ (d)None of these
25	In an examination, ten students scored the following marks: $60,58,90,51,47,81,70$, $95,87,99$. The range of this data is (a) 51 (b) 52 (c) 60 (d) 81
26	$\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=A B$ then $\angle B C D$ is a. (a) acute angle (b) obtuse angle (c) straight angle (d) right angle
27	A grouped frequency distribution table with classes of equal sizes using 63-72 (72 included) as one of the class is constructed for the following data: $30,32,45,54,74,78,108,112,66,76,88,40,14,20,15,35,44,66,75,84,95,96 \text {, }$ 102, 110, 88, 74, 112, 14, 34, 44. The number of classes in the distribution will be: (a) 9 (b) 10 (c) 11 (d) 12

close gruess	CBSEGuess.com

28	In a frequency distribution, 34-38,41-45, and so on. The lower class limit of first class interval when it expressed as a continuous distribution is (a) 39.5 (b) 40.5 (c) 38.5 (d) none of these
29	The class size in 5-5.02 (a) 5.01 (b) 0.02 (c) 5 (d) None of these
30	If $x=3-2 \sqrt{2}$, find $x^{2}+\frac{1}{x^{2}}$ (a) $6+4 \sqrt{2}$ (b) $6-4 \sqrt{2}$ (c) 6 (d) None of these
31	In the figure, $\mathrm{AB}\|\mid \mathrm{DE}$. If $\angle \mathrm{ABC}+\angle \mathrm{BCD}=\mathrm{x}+\angle \mathrm{CDE}$, then the value of x is (a) 90° (b) 180° (c) 270° (d) None of these
32	$\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle Y O Z$. (a) 116^{0} (b) 121^{0} (c) 59° (d) None of these
33	In figure 2, $\angle \mathrm{DBE}+\angle \mathrm{EQD}$ is

	$\begin{array}{llll}\text { (a) } 190^{\circ} & \text { (b) } 200^{\circ} & \text { (c) } 160^{\circ} & \text { (d) } 180^{\circ}\end{array}$
34	Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes $A B, B C$ and $C A$; while the other through $A C, C D$ and $D A$ (see Fig. 12.12). Then they cleaned the area enclosed within their lanes. If $A B$ $=9 \mathrm{~m}, \mathrm{BC}=40 \mathrm{~m}, \mathrm{CD}=15 \mathrm{~m}, \mathrm{DA}=28 \mathrm{~m}$ and $\angle \mathrm{B}=90$, which group cleaned more area and by how much? Find the total area cleaned by the students (neglecting the width of the lanes). (a) $603 \mathrm{~m}^{2}$ (b) $306 \mathrm{~m}^{2}$ (c) $630 \mathrm{~m}^{2}$ (d) None of these
35	The area of a regular hexagon is $600 \sqrt{3} \mathrm{~cm}^{2}$. Determine its perimeter. (a) 80 cm (b) 90 cm (c) 60 cm (d) None of these
36	In an isosceles triangle $A B C$ with $A B=A C, D$ and E are points on $B C$ such that $B E=C D$, then BD equals to (a) EC (b) ED (c) $A D$ (d) None of these
37	In an isosceles triangle $A B C, A B=A C$ and $C B$ is produced to D. then $A D$ is greater than. (a) BD (b) CD (c) AC (d) None of these
38	The graph of the line $x-2 y=3$., find the coordinates of the points when $x=-5$ (a) 4 (b) 1 (c) -4 (d) None of these
39	The sum of a two digit number and the number obtained by reversing the order of its digits is 121 . The linear equation of two variables to represent this statement is (a) $x=11-y$ (b) $10 x+y=121$ (c) $121-10 x=-y$ (d) None of these
40	In Fig. 6.16, if $x+w=y+z$, then $O B$ and $O D$ are.

SECTION C

Case study based questions: Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted. Q41-Q45 are based on Case Study -1 .

Case Study -1

Read the following passage and answer any four out of five.
The below pictures are few artificial examples of tringular shaped market building for better distribution.

Answer the following questions as per the direction.

close fguess	CBSEGuess.com

41.	In the given figure, name the two triangles which are congruent to each other. (a) $\Delta \mathrm{HIG} \cong \triangle \mathrm{DEF}$ (b) $\Delta H I G \cong \triangle A B C$ (c) $\Delta \mathrm{HIG} \cong \triangle \mathrm{CBA}$ (d) None of these			[1]
42.	The side $A B$ of $\triangle A B C$ equal to (a) Gl (b) DE	(c) HG	(d) HI	[1]
43.	$\angle G$ is equal to the angle (a) $\angle C$ (b) $\angle E$	(c) $\angle A$	(d) $\angle D$	1]
44.	If the area of $\triangle A B C$ is $120 \mathrm{~m}^{2}$ then, it (a) area of $\triangle D E F$ (b) area of GCAH	quals to (c) area of $\Delta \mathrm{HIG}$	(d) None of these	1]
45.	If sides of triangle HIG are in the ratio perimeter of \triangle DEF 540 m triangle is (a) 120 m (b) 240 m	HI:GI:GH = 3:4:2, (c) 180 m	en the length of $B C$, (d) None of these	[1]

chsefgess	

Case Study -2

Q46-Q50 are based on Case Study -2

In the following figure, points are plotted on a graph paper in successive order $(-4,-2),(-2,-4),(2,-3),(4,0),(3,4)$ and $(0,5)$ to obtain a polygon. Answer the following questions
as per the figure

46	Name the figure formed by joining the points in an order is (a) hexagon (b) Heptagon (c) Octagon (d) None of these	[1]
47.	The co-ordinate of point P is (a) $(0,4)$ (b) $(4,0)$ (c) $(4,4)$ (d) None of these	[1]
48.	The special name of the figure formed by joining B,P,O and C is (a) quadrilateral (b) trapezium (c) parallelogram (d) None of these	[1]
49.	Area of the triangle formed by OAH is (a) $-7.5 \mathrm{~cm}^{2}$ (b) $15 \mathrm{~cm}^{2}$ (c) $7.5 \mathrm{~cm}^{2}$ (d) None of these	[1]
50.	If a mirror is placed along the Y axis, then the co-ordinate of the reflection of the point D is (a) $(-2,-3)$ (b) $(-2,3)$ (c) $(2,3)$ (d) None of these	[1]

